Heart cytochrome c and its application towards the design and style of an electron transfer biosensor. Proteins. 2008;70(1):832. 42. Kokhan O, Wraight CA, Tajkhorshid E. The binding interface of cytochrome c and cytochrome c1 in the bc1 complex: rationalizing the function of crucial residues. Biophys J. 2010;99(8):26476. 43. Lange C, Hunte C. Carbazochrome crystal structure in the yeast cytochrome bc1 complicated with its bound substrate cytochrome c. Proc Natl Acad Sci U S A. 2002;99(five):2800. 44. Solmaz SR, Hunte C. Structure of complicated III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem. 2008;283(25):17542. 45. Stickle DF, Presta LG, Dill KA, Rose GD. Hydrogen bonding in globular proteins. J Mol Biol. 1992;226(4):11439. 46. Rogers MT, Helmholz L. The crystal structure of iodic acid. J Am Chem Soc. 1941;63:2784. 47. Albrecht G, Corey RB. The crystal structure of glycine. J Am Chem Soc. 1939;61(5):108703. 48. Steiner T. The hydrogen bond in the solid state. Angew Chem Int Ed Engl. 2002;41(1):496. 49. de Groot BL, van Aalten DM, Scheek RM, Amadei A, Vriend G, Berendsen HJ. Prediction of protein conformational freedom from distance constraints. Proteins. 1997;29(2):2401. 50. Kumar S, Nussinov R. Close-range electrostatic interactions in proteins. Chembiochem. 2002;3(7):6047. 51. Kumar S, Nussinov R. Relationship amongst ion pair geometries and electrostatic strengths in proteins. Biophys J. 2002;83(3):159512. 52. Donald JE, Kulp DW, DeGrado WF. Salt bridges: geometrically specific, designable interactions. Proteins. 2011;79(3):89815. 53. Gvritishvili AG, Gribenko AV, Makhatadze GI. Cooperativity of complex salt bridges. Protein Sci. 2008;17(7):12850. 54. Barlow DJ, Thornton JM. Ion-pairs in proteins. J Mol Biol. 1983;168(4):8675.55. Lee KK, Fitch CA, Garcia-Moreno B. Distance dependence and salt sensitivity of pairwise, coulombic interactions in a protein. Protein Sci. 2002;11(five):10046. 56. Kumar S, Ma B, Tsai CJ, Nussinov R. Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins. 2000;38(4):3683. 57. Musafia B, Buchner V, Arad D. Complicated salt bridges in proteins: statistical evaluation of structure and function. J Mol Biol. 1995;254(4):7610. 58. Berezovskii IN, Esipova NG, Tumanian VG. The distribution of direct interactions in the spatial structures of globular proteins. Acid phosphatase Inhibitors products Biofizika. 1998;43(three):39202. 59. Fain AV, Berezovskii IN, Chekhov VO, Ukrainskii DL, Esipova NG. Double and bifurcated hydrogen bonds in alpha-helices of globular proteins. Biofizika. 2001;46(6):9697. 60. Shi Z, Olson CA, Bell Jr AJ, Kallenbach NR. Stabilization of alpha-helix structure by polar side-chain interactions: complex salt bridges, cation-pi interactions, and C-H eader O H-bonds. Biopolymers. 2001;60(5):3660. 61. Loladze VV, Makhatadze GI. Energetics of charge-charge interactions amongst residues adjacent in sequence. Proteins. 2011;79(12):3494. 62. Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR. Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol. 1990;216(4):10314. 63. Mayne L, Englander SW, Qiu R, Yang JX, Gong YX, Spek EJ, et al. Stabilizing effect of a multiple salt bridge in a prenucleated peptide. J Am Chem Soc. 1998;120(41):10643. 64. Iqbalsyah TM, Doig AJ. Anticooperativity inside a Glu-Lys-Glu salt bridge triplet in an isolated alpha-helical peptide. Biochemistry. 2005;44(31):104496. 65. Pelletier H, Kraut J. Cry.